研究業績
Biol Pharm Bull 30, 9, 1610-6 (2007)
Role of phosphatidylinositol 3-kinase activation on insulin action and its alteration in diabetic conditions
著者
T. Asano, M. Fujishiro, A. Kushiyama, Y. Nakatsu, M. Yoneda, H. Kamata and H. Sakoda
カテゴリ
総説
Abstract
Inositol phospholipids phosphorylated on D3-position of their inositol rings (3-phosphoinositides) are known to play important roles in various cellular events. Activation of PI (phosphatidylinositol) 3-kinase is essential for aspects of insulin-induced glucose metabolism, including translocation of GLUT4 to the cell surface and glycogen synthesis. The enzyme exists as a heterodimer containing a regulatory subunit and one of two widely-distributed isoforms of the p110 catalytic subunit: p110alpha or p110beta. Activation of PI 3-kinase and its downstream AKT has been demonstrated to be essential for almost all of the insulin-induced glucose and lipid metabolism such as glucose uptake, glycogen synthesis, suppression of glucose output and triglyceride synthesis as well as insulin-induced mitogenesis. Accumulated PI(3,4,5)P(3) activates several serine/threonine kinases containing a PH (pleckstrin homology) domain, including Akt, atypical PKCs, p70S6 kinase and GSK. In the obesity-induced insulin resistant condition, JNK and p70S6K are activated and phosphorylate IRS-proteins, which diminishes the insulin-induced tyrosine phosphorylation of IRS-proteins and thereby impairs the PI 3-kinase/AKT activations. Thus, the drugs which restore the impaired insulin-induced PI 3-kinase/AKT activation, for example, by suppressing JNK or p70S6K, PTEN or SHIP2, could be novel agents to treat diabetes mellitus.